MOMENTS AND HYBRID SUBCONVEXITY FOR SYMMETRIC-SQUARE L-FUNCTIONS

نویسندگان

چکیده

We establish sharp bounds for the second moment of symmetric-square $L$-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where is a sum over $t_j$ in short interval. At central point $s=1/2$ $L$-function, our interval smaller than previous known results. More specifically, $|t_j|$ size $T$, $T^{1/5}$, while best was $T^{1/3}$ from work Lam. A little higher up on critical line, yields subconvexity bound $L$-function. we get at $s=1/2+it$ provided $|t_j|^{6/7+\delta}\le |t| \le (2-\delta)|t_j|$ any fixed $\delta>0$. Since $|t|$ can be taken significantly $|t_j|$, this may viewed as an approximation notorious problem $L$-function aspect $s=1/2$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subconvexity Bounds for Automorphic L–functions

We break the convexity bound in the t–aspect for L–functions attached to cuspforms f for GL2(k) over arbitrary number fields k. The argument uses asymptotics with error term with a power saving, for second integral moments over spectral families of twists L(s, f ⊗χ) by grossencharacters χ, from our previous paper [Di-Ga]. §0. Introduction In many instances, for cuspidal automorphic forms f on r...

متن کامل

Subconvexity Bounds for Triple L-functions and Representation Theory

We describe a new method to estimate the trilinear period on automorphic representations of PGL2(R). Such a period gives rise to a special value of the triple L-function. We prove a bound for the triple period which amounts to a subconvexity bound for the corresponding special value of the triple L-function. Our method is based on the study of the analytic structure of the corresponding unique ...

متن کامل

Symmetric Square L-Functions and Shafarevich-Tate Groups

CONTENTS We use Zagier's method to compute the critical values of the 1. Introduction symmetric square L-functions of six cuspidal eigenforms of level 2. Calculating the Critical Values one with rational coefficients. According to the Bloch-Kato 3. Tables of Results conjecture, certain large primes dividing these critical values 4. An Observation must be the orders of elements in generalised Sh...

متن کامل

Averages of symmetric square L-functions, and applications

We exhibit a spectral identity involving L(s,Symf) for f on SL2. Perhaps contrary to expectations, we do not treat L(s,Symf) directly as a GL3 object. Rather, we take advantage of the coincidence that the standard L-function for SL2 is the symmetric square for a cuspform on GL2 restricted to SL2. [1] As SL2 = Sp2, the integral identities obtained from Sp2n × Sp2n ⊂ Sp4n produce standard L-funct...

متن کامل

Weyl-type Hybrid Subconvexity Bounds for Twisted L-functions and Heegner Points on Shrinking Sets

Let q be odd and squarefree, and let χq be the quadratic Dirichlet character of conductor q. Let uj be a Hecke-Maass cusp form on Γ0(q) with spectral parameter tj . By an extension of work of Conrey and Iwaniec, we show L(uj ×χq, 1/2) ≪ε (q(1 + |tj |))1/3+ε, uniformly in both q and tj . A similar bound holds for twists of a holomorphic Hecke cusp form of large weight k. Furthermore, we show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Institute of Mathematics of Jussieu

سال: 2021

ISSN: ['1474-7480', '1475-3030']

DOI: https://doi.org/10.1017/s1474748021000566